3.90 \(\int \frac{\csc ^2(c+d x)}{a+b \sin ^2(c+d x)} \, dx\)

Optimal. Leaf size=53 \[ -\frac{b \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{a^{3/2} d \sqrt{a+b}}-\frac{\cot (c+d x)}{a d} \]

[Out]

-((b*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(a^(3/2)*Sqrt[a + b]*d)) - Cot[c + d*x]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.073055, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3187, 453, 205} \[ -\frac{b \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{a^{3/2} d \sqrt{a+b}}-\frac{\cot (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^2/(a + b*Sin[c + d*x]^2),x]

[Out]

-((b*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(a^(3/2)*Sqrt[a + b]*d)) - Cot[c + d*x]/(a*d)

Rule 3187

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*(a + (a + b)*ff^2*x^2)^p)/(1 + ff^2*x^2)^(m/2 + p
+ 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\csc ^2(c+d x)}{a+b \sin ^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1+x^2}{x^2 \left (a+(a+b) x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac{\cot (c+d x)}{a d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a+(a+b) x^2} \, dx,x,\tan (c+d x)\right )}{a d}\\ &=-\frac{b \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{a^{3/2} \sqrt{a+b} d}-\frac{\cot (c+d x)}{a d}\\ \end{align*}

Mathematica [A]  time = 0.295625, size = 53, normalized size = 1. \[ \frac{-\frac{b \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{\sqrt{a+b}}-\sqrt{a} \cot (c+d x)}{a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^2/(a + b*Sin[c + d*x]^2),x]

[Out]

(-((b*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/Sqrt[a + b]) - Sqrt[a]*Cot[c + d*x])/(a^(3/2)*d)

________________________________________________________________________________________

Maple [A]  time = 0.109, size = 52, normalized size = 1. \begin{align*} -{\frac{1}{da\tan \left ( dx+c \right ) }}-{\frac{b}{da}\arctan \left ({ \left ( a+b \right ) \tan \left ( dx+c \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^2/(a+sin(d*x+c)^2*b),x)

[Out]

-1/d/a/tan(d*x+c)-1/d/a*b/(a*(a+b))^(1/2)*arctan((a+b)*tan(d*x+c)/(a*(a+b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+b*sin(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.78419, size = 748, normalized size = 14.11 \begin{align*} \left [-\frac{\sqrt{-a^{2} - a b} b \log \left (\frac{{\left (8 \, a^{2} + 8 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \,{\left (4 \, a^{2} + 5 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} - 4 \,{\left ({\left (2 \, a + b\right )} \cos \left (d x + c\right )^{3} -{\left (a + b\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} - a b} \sin \left (d x + c\right ) + a^{2} + 2 \, a b + b^{2}}{b^{2} \cos \left (d x + c\right )^{4} - 2 \,{\left (a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + a^{2} + 2 \, a b + b^{2}}\right ) \sin \left (d x + c\right ) + 4 \,{\left (a^{2} + a b\right )} \cos \left (d x + c\right )}{4 \,{\left (a^{3} + a^{2} b\right )} d \sin \left (d x + c\right )}, \frac{\sqrt{a^{2} + a b} b \arctan \left (\frac{{\left (2 \, a + b\right )} \cos \left (d x + c\right )^{2} - a - b}{2 \, \sqrt{a^{2} + a b} \cos \left (d x + c\right ) \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 2 \,{\left (a^{2} + a b\right )} \cos \left (d x + c\right )}{2 \,{\left (a^{3} + a^{2} b\right )} d \sin \left (d x + c\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+b*sin(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/4*(sqrt(-a^2 - a*b)*b*log(((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^4 - 2*(4*a^2 + 5*a*b + b^2)*cos(d*x + c)^2 -
 4*((2*a + b)*cos(d*x + c)^3 - (a + b)*cos(d*x + c))*sqrt(-a^2 - a*b)*sin(d*x + c) + a^2 + 2*a*b + b^2)/(b^2*c
os(d*x + c)^4 - 2*(a*b + b^2)*cos(d*x + c)^2 + a^2 + 2*a*b + b^2))*sin(d*x + c) + 4*(a^2 + a*b)*cos(d*x + c))/
((a^3 + a^2*b)*d*sin(d*x + c)), 1/2*(sqrt(a^2 + a*b)*b*arctan(1/2*((2*a + b)*cos(d*x + c)^2 - a - b)/(sqrt(a^2
 + a*b)*cos(d*x + c)*sin(d*x + c)))*sin(d*x + c) - 2*(a^2 + a*b)*cos(d*x + c))/((a^3 + a^2*b)*d*sin(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc ^{2}{\left (c + d x \right )}}{a + b \sin ^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**2/(a+b*sin(d*x+c)**2),x)

[Out]

Integral(csc(c + d*x)**2/(a + b*sin(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.18442, size = 112, normalized size = 2.11 \begin{align*} -\frac{\frac{{\left (\pi \left \lfloor \frac{d x + c}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a + 2 \, b\right ) + \arctan \left (\frac{a \tan \left (d x + c\right ) + b \tan \left (d x + c\right )}{\sqrt{a^{2} + a b}}\right )\right )} b}{\sqrt{a^{2} + a b} a} + \frac{1}{a \tan \left (d x + c\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+b*sin(d*x+c)^2),x, algorithm="giac")

[Out]

-((pi*floor((d*x + c)/pi + 1/2)*sgn(2*a + 2*b) + arctan((a*tan(d*x + c) + b*tan(d*x + c))/sqrt(a^2 + a*b)))*b/
(sqrt(a^2 + a*b)*a) + 1/(a*tan(d*x + c)))/d